Algorithms for accurate, validated and fast polynomial evaluation

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Algorithms for Accurate, Validated and Fast Polynomial Evaluation

Algorithms for Accurate, Validated and Fast Polynomial Evaluation∗ Stef Graillat†, Philippe Langlois‡ and Nicolas Louvet§ †PEQUAN, LIP6, Université Pierre et Marie Curie, CNRS, Paris, France E-mail: [email protected] ‡DALI, ELIAUS, Université de Perpignan Via Domitia, France E-mail: [email protected] §Arénaire, LIP, INRIA, Université de Lyon, CNRS, France E-mail: [email protected]

متن کامل

Accurate, Validated and Fast Evaluation of Bézier Tensor Product Surfaces

This paper proposes a compensated algorithm to evaluate Bézier tensor product surfaces with floating-point coefficients and coordinates. This algorithm is based on the application of error-free transformations to improve the traditional de Casteljau tensor product algorithm. This compensated algorithm extends the compensated de Casteljau algorithm for the evaluation of a Bézier curve to the cas...

متن کامل

Fast algorithms for polynomial evaluation and differentiation at special knots

We present fast evaluating and differentiating algorithms for the Hermite interpolating polynomials with the knots of multiplicity 2, which are generated dynamically in a field , , K K by the recurrent formula of the form 1 0 1,2,.., 1; i i x x i n x . As in the case of Lagrange-Newton interpolating algorithms, the running time of these algorithms is C n O n base operations from the field K, wh...

متن کامل

Fast Algorithms for Polynomial Systems Solving

Solving a system of polynomial equations with a finite number of solutions can be reduced to linear algebra manipulations in an algebra A of finite type. We show how to accelerate this linear algebra phase in order to compute a “rational parameterization” of the zeros of the polynomial system. We propose new algorithmic solutions by extending ideas introduced by V. Shoup in the context of the f...

متن کامل

Fast algorithms for discrete polynomial transforms

Consider the Vandermonde-like matrix P := (Pk(cos jπ N ))j,k=0, where the polynomials Pk satisfy a three-term recurrence relation. If Pk are the Chebyshev polynomials Tk , then P coincides with CN+1 := (cos jkπ N )j,k=0. This paper presents a new fast algorithm for the computation of the matrixvector product Pa in O(N logN) arithmetical operations. The algorithm divides into a fast transform wh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Japan Journal of Industrial and Applied Mathematics

سال: 2009

ISSN: 0916-7005,1868-937X

DOI: 10.1007/bf03186531